Pandas - Expanding Z-score Across Multiple Columns
I want to calculate an expanding z-score for some time series data that I have in a DataFrame, but I want to standardize the data using the mean and standard deviation of multiple
Solution 1:
This is my own attempt at trying to calculate the expanding Z-Scores pooling all of the columns. Comments on how to do it more efficiently would be welcome.
def pooled_expanding_zscore(df, min_periods=2):
"""Calculates an expanding Z-Score down the rows of the DataFrame while pooling all of the columns.
Assumes that indexes are not hierarchical.
Assumes that df does not have columns named 'exp_mean' and 'exp_std'.
"""
# Get last sorted column name
colNames = df.columns.values
colNames.sort()
lastCol = colNames[-1]
# Index name
indexName = df.index.name
# Normalize DataFrame
df_stacked = pd.melt(df.reset_index(),id_vars=indexName).sort_values(by=[indexName,'variable'])
# Calculates the expanding mean and standard deviation on df_stacked
# Keeps just the rows where 'variable'==lastCol
df_exp = df_stacked.expanding(2)['value']
df_stacked.loc[:,'exp_mean'] = df_exp.mean()
df_stacked.loc[:,'exp_std'] = df_exp.std()
exp_stats = (df_stacked.loc[df_stacked.variable==lastCol,:]
.reset_index()
.drop(['index','variable','value'], axis=1)
.set_index(indexName))
# add exp_mean and exp_std back to df
df = pd.concat([df,exp_stats],axis=1)
# Calculate Z-Score
df_mat = df.loc[:,colNames].as_matrix()
exp_mean_mat = df.loc[:,'exp_mean'].as_matrix()[:,np.newaxis]
exp_std_mat = df.loc[:,'exp_std'].as_matrix()[:,np.newaxis]
zScores = pd.DataFrame(
(df_mat - exp_mean_mat) / exp_std_mat,
index=df.index,
columns=colNames)
# Use min_periods to kill off early rows
zScores.iloc[:min_periods-1,:] = np.nan
return zScores
Post a Comment for "Pandas - Expanding Z-score Across Multiple Columns"