Converting An Image To Grayscale Using Numpy
I have an image represented by a numpy.array matrix nxm of triples (r,g,b) and I want to convert it into grayscale, , using my own function. My attempts fail converting the matrix
Solution 1:
Here is a working code:
defgrayConversion(image):
grayValue = 0.07 * image[:,:,2] + 0.72 * image[:,:,1] + 0.21 * image[:,:,0]
gray_img = grayValue.astype(np.uint8)
return gray_img
orig = cv2.imread(r'C:\Users\Jackson\Desktop\drum.png', 1)
g = grayConversion(orig)
cv2.imshow("Original", orig)
cv2.imshow("GrayScale", g)
cv2.waitKey(0)
cv2.destroyAllWindows()
Solution 2:
You can use a dot product:
gray_image = image.dot([0.07, 0.72, 0.21])
Or even just do the whole operation manually:
b = image[..., 0]
g = image[..., 1]
r = image[..., 2]
gray_image = 0.21 * r + 0.72 * g + 0.07 * b
Don't forget to convert back to 0-255:
gray_image = np.min(gray_image, 255).astype(np.uint8)
Solution 3:
Solution using apply_along_axis
A solution can be achieved by using apply_along_axis
:
import numpy as np
defgrayscale(colors):
"""Return grayscale of given color."""
r, g, b = colors
return0.07 * r + 0.72 * g + 0.21 * b
image = np.random.uniform(255, size=(10,10,3))
result = np.apply_along_axis(grayscale, 2, image)
Examples
10x10 image
We can now proceed to visualise the results:
from matplotlib import pyplot as plt
plt.subplot(1,2,1)
plt.imshow(image)
plt.subplot(1,2,2)
plt.imshow(result, cmap='gray')
Textual example (2x2 image)
To visualise the actual results in text I will use a smaller array, just a 2x2 image:
image = np.random.uniform(250, size=(2,2,3))
The content is:
array([[[205.02229826, 109.56089703, 163.74868594],
[ 11.13557763, 160.98463727, 195.0294515 ]],
[[218.15273335, 84.94373737, 197.70228018],
[ 75.8992683 , 224.49258788, 146.74468294]]])
Let's convert it to grayscale, using our custom function:
result = np.apply_along_axis(grayscale, 2, image)
And the output of the conversion is:
array([[127.62263079, 157.64461409],
[117.94766108, 197.76399547]])
We can visualise this simple example too, using the same code as above:
Further suggestions
If you want to apply your own custom function, then apply_along_axis
is the way to go, but you should consider using purer numpy approaches such as the one suggested by Eric or, if possible, just load the black and white image using cv2
option:
cv2.imread('smalltext.jpg',0)
Post a Comment for "Converting An Image To Grayscale Using Numpy"