Convert Dataframe Columns To Objects Efficiently
I have a Panda's DataFrame with a lot of entries. I would like to create an object by row without doing an iteration if possible. Ie: Age Name ----------- 0 1
Solution 1:
If you want a list of objects, you can use itertuples
, these return namedtuple
objects (well, almost).
list(df.itertuples(name='Person', index=False))
[Person(Age=13, Name='John'),
Person(Age=16, Name='Marc'),
Person(Age=17, Name='Prisl'),
Person(Age=14, Name='Mike'),
Person(Age=11, Name='Robert')]
Another idea uses namedtuple
and apply
.
from collections import namedtuple
cls = namedtuple(typename='Person', field_names=df.columns.tolist())
df.apply(lambda r: cls(**r.to_dict()), 1)
0 (13, John)
1 (16, Marc)
2 (17, Prisl)
3 (14, Mike)
4 (11, Robert)
dtype: object
df.apply(lambda r: cls(**r.to_dict()), 1).tolist()
[Person(Age=13, Name='John'),
Person(Age=16, Name='Marc'),
Person(Age=17, Name='Prisl'),
Person(Age=14, Name='Mike'),
Person(Age=11, Name='Robert')]
If you aren't particular on classes, you can use to_dict
to return a list of records.
df.to_dict('records')
[{'Age': 13, 'Name': 'John'},
{'Age': 16, 'Name': 'Marc'},
{'Age': 17, 'Name': 'Prisl'},
{'Age': 14, 'Name': 'Mike'},
{'Age': 11, 'Name': 'Robert'}]
Post a Comment for "Convert Dataframe Columns To Objects Efficiently"