Python Pandas Match Two Indexes And Value Of Column
I want to match between indexes of rows in two different dfs, and if the indexes are the same, I want to go to the second df, iterate through it's columns, and if the value of a co
Solution 1:
You can first create index from names
column by set_index
, replace
values by dict
and add_prefix
.
Then join
it to original:
cols = ['col1','col2','col3']
DF2 = DF2.set_index('names')[cols].replace({'V':'DF2', 'X':np.nan}).add_prefix('total_')
print (DF2)
total_col1 total_col2 total_col3
names
bbb DF2 DF2 NaN
zzz NaN NaN DF2
df = df.join(DF2, on='names')
print (df)
names col1 col2 col3 total total_col1 total_col2 total_col3
0 bbb V V X 2 DF2 DF2 NaN
1 ccc V X X 1 NaN NaN NaN
Post a Comment for "Python Pandas Match Two Indexes And Value Of Column"