How To Modify A Mask To Make It Perfect Circle
Solution 1:
An approach is to Otsu's threshold the image to obtain a binary image. From here, we perform morphological opening with a elliptical shaped kernel. This step will effectively remove the extra artifacts but will distort the circle a bit. To repair the circle, we find contours and use cv2.minEnclosingCircle()
then draw this onto a mask to get a perfect circle.
Here's the visualization of each step:
I took a screenshot of your image without the grid lines. Input image:
Otsu's threshold to obtain a binary image
Morph opening with elliptical shaped kernel
Result from cv2.minEnclosingCircle()
and the resulting contour drawn onto a mask
Code
import cv2
import numpy as np
# Load image, convert to grayscale, then Otsu's threshold
image = cv2.imread('1.png')
mask = np.zeros(image.shape, dtype=np.uint8)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Morph open with a elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (75,75))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=4)
# Find contours and create perfect circle on mask
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] iflen(cnts) == 2else cnts[1]
for c in cnts:
((x, y), r) = cv2.minEnclosingCircle(c)
cv2.circle(image, (int(x), int(y)), int(r), (36, 255, 12), 3)
cv2.circle(mask, (int(x), int(y)), int(r), (255, 255, 255), -1)
cv2.imshow('thresh', thresh)
cv2.imshow('opening', opening)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.waitKey()
If you don't have an image and instead have a np.array
, the process stays the same but you can skip the threshold step. Also depending on how large the image is, you may have to adjust the kernel size. For instance, changing it from (75, 75)
to say (10, 10)
. You could also experiment with the number of iterations to perform morph opening. Here's an example of how to do it if you had an np.array
of points that formed the image
Input image ->
Morph open ->
Result
Code
import cv2
import numpy as np
mask = np.array([ [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,255,255,255], [0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,255,255,255], [0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,255,255,255,255], [0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,255,255,255,255], [0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,255,255,255,255,255], [0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,255,255,255,255,255], [0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,255,255], [0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0], [0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0], [0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0], [0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0], [0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0], [0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0], [0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0], [0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0], [0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], dtype=np.uint8)
# Create blank image with the same size as mask
image = np.zeros(mask.shape, dtype=np.uint8)
# Morph open with a elliptical shaped kernel
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10,10))
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel, iterations=2)
# Find contours and create perfect circle on mask
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] iflen(cnts) == 2else cnts[1]
for c in cnts:
((x, y), r) = cv2.minEnclosingCircle(c)
cv2.circle(image, (int(x), int(y)), int(r), (255, 255, 255), -1)
cv2.imshow('opening', opening)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.waitKey()
Post a Comment for "How To Modify A Mask To Make It Perfect Circle"