Skip to content Skip to sidebar Skip to footer

Pandas Max Value Index

I have a Pandas DataFrame with a mix of screen names, tweets, fav's etc. I want find the max value of 'favcount' (which i have already done) and also return the screen name of tha

Solution 1:

Use argmax()idxmax() to get the index of the max value. Then you can use loc

df.loc[df['favcount'].idxmax(), 'sn']

Edit:argmax()is now deprecated, switching foridxmax()

Solution 2:

I think you need idxmax - get index of max value of favcount and then select value in column sn by loc:

df = pd.DataFrame({'favcount':[1,2,3], 'sn':['a','b','c']})

print (df)
   favcount sn
0         1  a
1         2  b
2         3  c

print (df.favcount.idxmax())
2

print (df.loc[df.favcount.idxmax()])
favcount    3
sn          c
Name: 2, dtype: object

print (df.loc[df.favcount.idxmax(), 'sn'])
c

Solution 3:

By using same df as above,

# python code

df = pd.DataFrame({'favcount':[1,2,3], 'sn':['a','b','c']})

print (df) favcount sn 0 1 a 1 2 b 2 3 c

## You can use max() print(df[df.favcount.max() == df['favcount']])

favcount sn 2 3 c

## If you need specific column you can select it print(df[df.favcount.max() == df['favcount']].sn)

2 c

Post a Comment for "Pandas Max Value Index"