How To Go Back From One-hot-encoded Labels To Single Column Using Sklearn?
I have predicted some data using model and getting this kind of results [[0 0 0 ... 0 0 1] [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] [0 0 0 ... 0 0 1] [0 0 0
Solution 1:
Use inverse_transform
of LabelEncoder
and OneHotEncoder
:
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
s = pd.Series(['a', 'b', 'c'])
le = LabelEncoder()
ohe = OneHotEncoder(sparse=False)
s1 = le.fit_transform(s)
s2 = ohe.fit_transform(s.to_numpy().reshape(-1, 1))
What you have:
# s1 from LabelEncoder
array([0, 1, 2])
# s2 from OneHotEncoder
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
What you should do:
inv_s1 = le.inverse_transform(s1)
inv_s2 = ohe.inverse_transform(s2).ravel()
Output:
# inv_s1 == inv_s2 == sarray(['a', 'b', 'c'], dtype=object)
Post a Comment for "How To Go Back From One-hot-encoded Labels To Single Column Using Sklearn?"