Changing Attributes Of Nodes
I have the following network: G = nx.Graph() G.add_node(0, weight=8) G.add_node(1, weight=5) G.add_node(2, weight=3) G.add_node(3, weight=2) G.add_node(4, weight=1) G.add_node(5, w
Solution 1:
I made you a crazy list comprehension (because they are cool):
newWeights = \
[
sum( # summ for averaging
[G.nodes[neighbor]['weight'] for neighbor in G.neighbors(node)] # weight of every neighbor
+ [G.nodes[i]['weight']] # adds the node itsself to the average
) / (len(list(G.neighbors(node)))+1) # average over number of neighbours+1iflen(list(G.neighbors(node))) > 0# if there are no neighbourselse G.nodes[i]['weight'] # weight stays the same if no neighboursfor i,node inenumerate(G.nodes) # do the above for every node
]
print(newWeights) # [6.5, 5.333333333333333, 5.25, 5.0, 1, 4.0, 4.333333333333333]for i, node inenumerate(G.nodes):
G.nodes[i]['weight'] = newWeights[i] # writes new weights after it calculated them all.
But if you hate fun and list comprehensions you can also use this version:
newWeights = []
for i,node inenumerate(G.nodes): # calculates average for every node
summation = G.nodes[i]['weight'] # weight of node itsselffor neighbor in G.neighbors(node): # adds the weight of every neighbour
summation += G.nodes[neighbor]['weight']
average = summation / (len(list(G.neighbors(node)))+1) # division for average
newWeights.append(average)
print(newWeights)
for i, node inenumerate(G.nodes):
G.nodes[i]['weight'] = newWeights[i]
Post a Comment for "Changing Attributes Of Nodes"